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Communicated by V.V. Anisovich

Abstract. The experimental data on the doorway states for one-nucleon transfer reactions permit to reveal
the many-particle nucleon-nucleon forces resulting from the nonlinearity of strong interaction. The three-
particle and four-particle forces are found to be of the same magnitude as the two-particle ones in contrast
to the finding from the few-nucleon systems. The origin of this difference is explained.

PACS. 24.80.+y Nuclear tests of fundamental interactions and symmetries – 25.40.-h Nucleon-induced
reactions – 21.10.-k Properties of nuclei; nuclear energy levels – 13.75.Cs Nucleon-nucleon interactions
(including antinucleons, deuterons, etc.)

1 Introduction: nonlinearity of strong interac-
tion andmany-particle nucleon-nucleon forces

There is no doubts at present that the physics of strong
interaction is essentially nonlinear. The immediate con-
sequence of this nonlinearity is the existence of many-
particle nucleon-nucleon forces. Indeed, the Lagrangian
density of nonlinear theory contains higher-power terms
of meson fields in addition to the quadratic ones. There
are ϕ3 and ϕ4 terms in renormalizable theories and those
of arbitrary powers in the effective ones. The ϕ3 term de-
scribes the emission of meson by meson as shown in fig. 1a.
This gives rise to the three-particle nucleon-nucleon force
when each meson line enters the nucleon one, fig. 1b. In the
second perturbation order the process of fig. 1c appears
leading to the four-particle force, the ϕ4 term, fig. 1d,
gives rise to such a force at first perturbation order, and
so on. In this sense the nonlinearity of strong interaction
and the existence of many-particle nucleon-nucleon forces
is the same.

As shown by practice of the calculations for few-
nucleon systems the three-particle NN forces must be
included in addition to the two-particle ones to get the
good agreement with experiment. But the 3N forces are
found to be rather modest compared to the 2N ones: the
overall effect is within 10% only [1]. According to the con-
ventional opinion little room remains for the 4N forces. To
justify this viewpoint the following estimate is used which
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Fig. 1. The ϕ3 term (a), the resulting 3N forces (b), the
second-order process in ϕ3 (c), and the ϕ4 term (d), both giv-
ing rise to the 4N forces.

is based on the effective field theory arguments [2]:

f2 � 30 MeV , f3 � f
2
2

m
� 1 MeV ,

f4 � f3
2

m2
� 30 keV , (1)

where f2, f3 and f4 are the 2N, 3N and 4N forces at the
average distance between nucleons,m is the nucleon mass.
So

f2 : f3 : f4 = 1 : 10−3/2 : 10−3 . (2)
It is worth mentioning, however, that the processes of figs.
1c and 1d give rise to the 4N forces when each meson line
enters its own nucleon one as shown in fig. 2a. But the
interaction is not instantaneous and therefore two meson
lines may enter the same nucleon one, fig. 2b. This gives
rise to the contribution of the 4N interaction mechanism
to the 3N force. Clearly the higher forces may contribute
to the 3N interaction by this mechanism. The two follow-
ing points must be stressed:

1. What the few-nucleon people assume to be the 3N
forces is in fact the combination of the genuine ones arising
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Fig. 2. The 4N force (a) and the contribution of the 4N in-
teraction mechanism to the 3N force (b). The circles denote
the unification of fig. 1c and fig. 1d processes.

from the nonlinearity, fig. 1b, and the contributions of
higher many-particle forces (the example is provided by
fig. 2b).

2. These two sources of the 3N forces cannot be sep-
arated with the aid of the data on few-nucleon systems
because some ansatz for both the wave functions and the
forces must be used in this case.

Such separation becomes possible by studying the
doorway states for one-particle transfer reactions in com-
plex nuclei. As demonstrated in ref. [3] these states are
eigenstates of the nucleon in nuclear static field the only
contribution to which being provided by the Hartree dia-
grams with the free-space nucleon-nucleon forces as shown
in fig. 3. The demonstration is repeated in sect. 2.1.

It is of primary importance that the 2N contribution,
fig. 3a,

U2(x) =
∫
f2(|r − r′|)ρ(r′)d3r′ (3)

is independent of any nuclear model because the 2N forces
f2 are deduced from the properties of the deuteron and the
NN elastic-scattering data, whereas the nucleon density
distributions are determined from the electron-nucleus [4]
and 1 GeV proton-nucleus [5] elastic-scattering data. Ow-
ing to this independence the contribution of many-particle
NN forces to the nuclear static field can be unambigu-
ously revealed by comparing the results of calculations
including the 2N forces only (i.e. only U2(x)) with the
observed doorway state energies. The latter ones are ob-
served as average energies of the peaks in the quasielastic
knockout (p, 2p), (p, pn), (e, e′p) reaction cross-sections as
functions of the missing energy. The data are obtained by
the PNPI group [6] for the (p, 2p) and (p, pn) reactions in
the doubly closed-shell nuclei 16O, 40Ca, 90Zr, and 208Pb.
These nuclei are spherical, hence the quantum-mechanical
problem is the motion of a particle in the central field. This
problem is solved with any desired accuracy and without
any simplifying approximations. So the doorway states un-
der consideration are unique nuclear objects, both model-
independent and obeying exactly soluble problem. For this
reason a lot of reliable information about both the many-
particle NN forces and the nuclear structure may be ob-
tained by studying this object. These results are summa-
rized in subsect. 2.2. The number of nucleons which are
out of the nuclear Fermi-surface because of the correla-
tions is estimated in subsect. 2.3 by using the fact that the
doorway state wave functions describe the single-particle
states of nucleons rather than those of quasiparticles, thus

Fig. 3. Contributions of 2N (a), 3N (b) and 4N (c) forces
to the nuclear static field. The ellipsis denotes the possible
contributions from higher forces.

being correlation-free objects. Section 3 is for concluding
remarks.

2 Doorway states for one-nucleon transfer
reactions

2.1 Theory

Evolution of the state arising from the one-nucleon trans-
fer to the nuclear ground state |A0〉 at the initial time
moment t = 0 is described by the single-particle propaga-
tor [7]

S(x, x′; τ) = −i〈A0|Tψ(x, τ)ψ†(x′, 0)|A0〉 =

= iθ(−τ)
(A−1)∑

j

Ψj(x)Ψ †
j (x′)e−iEjτ

−iθ(τ)
(A+1)∑

k

Ψk(x)Ψ †
k(x′)e−iEkτ . (4)

At τ < 0 it describes the evolution of the hole state,

Ψj(x) = 〈(A− 1)j |ψ(x)|A0〉 , Ej = E0(A) − Ej(A− 1) ,
(5)

when the nucleon is removed from the ground state A0,
whereas at τ > 0 the evolution of the particle state is
described,

Ψk(x) = 〈A0|ψ(x)|(A+ 1)k〉 , Ek = Ek(A+ 1) − E0(A) ,
(6)

when the nucleon is added to the ground state A0. The
quantities Ej(A−1), Ek(A+1) and E0(A) are total binding
energies of the states |(A−1)j〉 of the (A−1) nucleus, the
states |(A + 1)k〉 of the (A + 1) nucleus and the ground
state |A0〉 of the A one.

The Fourier transform of the propagator

G(x, x′; ε) =
∫
S(x, x′; τ)eiεdτ =

(A−1)∑
j

Ψj(x)Psi†j(x′)
ε− Ej − iδ +

(A+1)∑
k

Ψk(x)Ψ †
k(x′)

ε− Ek + iδ
, δ → +0 (7)

obeys the Dyson equation

εG(x, x′; ε) = δ(x− x′) + k̂xG(x, x′; ε)

+
∫
M(x, x1; ε)G(x1, x′; ε)dx1 , (8)
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Fig. 4. Lowest-order energy-dependent diagrams of the mass
operator: the correlation one (a) and the Fock one (b).

where k̂x is the kinetic energy and the mass operator
M(x, x′; ε) includes all Feynman diagrams which are ir-
reducible in the one-particle channel.

We are interested in the very beginning of the evolu-
tion, i.e. the τ → 0 limit. According to the time-energy
Heisenberg relation this is equivalent to the limit ε→ ∞.
In this limit

G(x, x′; ε) =
I0(x, x′)
ε

+
I1(x, x′)
ε2

+
I2(x, x′)
ε3

, (9)

where (see the definition (4) of the propagator)

I0(x, x′) =
(A−1)∑

j

Ψj(x)Ψ †
j (x′) +

(A+1)∑
k

Ψk(x)Ψ †
k(x′) =

i

[
S(x, x′; +0) − S(x, x′;−0)

]
; (10)

I1(x, x′) =
(A−1)∑

j

EjΨj(x)Ψ †
j (x′) +

(A+1)∑
k

EkΨk(x)Ψ †
k(x′) =

−
[
Ṡ(x, x′; +0) − Ṡ(x, x′;−0)

]
; (11)

I2(x, x′) =
(A−1)∑

j

E2
jΨj(x)Ψ †

j (x′) +
(A+1)∑

k

E2
kΨk(x)Ψ †

k(x′) =

−i
[
S̈(x, x′; +0) − S̈(x, x′;−0)

]
, (12)

the quantities I0, I1 and I2 thus describing the very be-
ginning of the evolution

(
Ṡ = ∂S

∂τ , S̈ = ∂2S
∂τ2

)
.

Now consider the mass operatorM(x, x′; ε). It includes
the energy-independent Hartree diagrams Ust(x)δ(x− x′)
which are shown in fig. 3, the higher-order diagrams de-
scribing the nuclear correlation effects (the lowest-order
diagram of such kind is shown in fig. 4a) and the Fock ones,
fig. 4b. The correlation diagrams include the propagators
of intermediate states thus behaving as ε−1 in the ε→ ∞
limit (see ref. [8] for a more stringent demonstration). The
same is valid for the Fock diagrams, fig. 4b. Indeed, the
interaction between baryons proceeds via the exchange by
some particles (they are quark-antiquark pairs and/or glu-
ons in the QCD) and therefore both the momentum and
the energy are transferred through the interaction. As a re-
sult the Fock diagrams also include the intermediate-state
propagators thus being of order of ε−1 in the ε→ ∞ limit.
(In ref. [3] this is demonstrated for the meson-nucleon in-

termediate state.) So the mass operator in this limit is

M(x, x′; ε) = Ust(x)δ(x− x′) +
Π(x, x′)
ε

+ · · · (13)
ε→ ∞

Introducing the static Hamiltonian

hst = k̂x + Ust(x) , (14)

let us write down the high-energy limit Dyson equation in
the form

εG(x, x′; ε) = δ(x− x′) + hstG(x, x′; ε)

+
∫ (

Π(x, x1)
ε

+ · · ·
)
G(x1, x′; ε)dx1 . (15)

Putting the asymptotics (9) into (15) and equating coef-
ficients at the same powers of ε−1, we get

(A−1)∑
j

Ψj(x)Ψ †
j (x′) +

(A+1)∑
k

Ψk(x)Ψ †
k(x′) =

δ(x− x′) , (16)
(A−1)∑

j

EjΨj(x)Ψ †
j (x′) +

(A+1)∑
k

EkΨk(x)Ψ †
k(x′) =

hstδ(x− x′) , (17)
(A−1)∑

j

E2
jΨj(x)Ψ †

j (x′) +
(A+1)∑

k

E2
kΨk(x)Ψ †

k(x′) =

h2stδ(x− x′) +Π(x, x′) . (18)

Equations (11), (14) and (17) may be written as

−
[
Ṡ(x, x′; +0) − Ṡ(x, x′;−0)

]
=

hstδ(x− x′) = [kx + Ust(x)] δ(x− x′) . (19)

As follows from the lhs of (19) the Hamiltonian hst de-
scribes the very beginning of the one-nucleon transfer pro-
cess, the eigenstates of hst thus being the doorway states
for one-nucleon transfer reactions. On the other hand, the
rhs of (19) shows that the Hamiltonian hst describes the
motion of nucleon in nuclear static field Ust(x). Indeed,
the latter is expressed through the free-space NN forces
rather than the effective ones, thus being the nucleon field
rather than the quasiparticle one. So we proved that the
doorway states for one-nucleon transfer reactions are the
eigenstates of nucleon in nuclear static field.

Let us introduce the doorway state wave functions

hstϕλ(x) = ελϕλ(x) (20)

and write down eqs. (16)–(18) in the doorway state repre-
sentation. Multiplying them by ϕ†λ(x)ϕλ(x′) and integrat-
ing over x and x′, we get

(A−1∑
j

s
(λ)
j +

(A+1)∑
k

s
(λ)
k = 1 , (16a)
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Fig. 5. Experimental doorway state energies and results of the calculations using the Bonn B (a) and OSBEP (b) potentials
for the 2N forces. The label “pair” is for the results including the 2N forces only, whereas those including both the two-particle
and many-particle forces are labelled by “full”.

(A−1∑
j

Ejs
(λ)
j +

(A+1)∑
k

Eks
(λ)
k = ελ , (17a)

(A−1∑
j

E2
j s

(λ)
j +

(A+1)∑
k

E2
ks

(λ)
k = ελ + σ2

λ , (18a)

where

s
(λ)
j,k =

∣∣∣∣
∫
Ψ †

j,k(x)ϕλ(x)dx
∣∣∣∣
2

(21)

is the fraction of the doorway state λ in the actual nuclear
state j or k, and σλ is its spreading width

σ2
λ =

∫
ϕ†λ(x)Π(x, x′)ϕλ(x′)dxdx′ . (22)

Let us discuss the above relations in more details.
1. As follows from eq. (16a) the doorway states of nu-

cleus A are distributed over the physical states of both
the A− 1 and A+ 1 nuclei. This is a general property of
single-particle states of arbitrary nature because it follows
from the commutation relation

a†αaα + aαa†α = 1 (23)

for the fermion field operators (the subscript α labels the
single-particle state of any nature). Indeed,

〈A0|a†αaα|A0〉 + 〈A0|aαa†α|A0〉 =
(A−1)∑

j

〈A0|a†α|(A− 1j〉〈(A− 1)j |aα|A0〉 +

+
(A+1)∑

k

〈A0|aα|(A+ 1)k〉〈(A+ 1)k|a†α|A0〉 =

(A−1)∑
j

s
(α)
j +

(A+1)∑
k

s
(α)
k = 1 . (24)

This is the actual physical reason why the single-particle
occupation numbers

nα = 〈A0|a†αaα|A0〉 =
(A−1)∑

j

s
(α)
j (25)

are less than unity in the general case. According to the
arguments of ref. [9] nα < 1 because the high-momentum
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components of nuclear single-particle spectral function

sα(ε) =
(A−1)∑

j

s
(α)
j δ(ε− Ej) (26)

are not available in experiment. As seen from (24) and (25)
these arguments are wrong.

2. As seen from (22) the doorway state spreading
widths depend upon the wave functions rather than the
energies, thus being roughly the same for all doorway
states (there is no arguments in favour of the momentum
dependence of the Π(x, x′) operator). In such conditions
it is reasonable to identify σ with the largest observed
width value. The latter is the width of the peaks corre-
sponding to the 1s1/2 hole states. According to ref. [6]
measurements it is 20 MeV in all nuclei.

3. The absolute values of the s-factors which are neces-
sary to determine the doorway state energies using the re-
lation (17a) are measured with a rather poor accuracy be-
cause of both the experimental and theoretical uncertain-
ties. For this reason the energies of weakly bound states
with |ελ| < σ are yet unknown (one should bear in mind
that the low-lying states of A∓1 nuclei are Landau-Migdal
[8] quasiparticles rather than the nucleon single-particle
states). The situation is more favourable for deep hole
states |ελ| > σ, since they are mainly distributed over the
physical states of the A−1 nucleus, and therefore the con-
tribution from the second term of the lhs of eq. (17a) may
be neglected. For these reasons the average energies of the
peaks in the cross-sections of the quasielastic knockout
reactions leading to the deep hole states can be identi-
fied with the doorway state energies within an accuracy
of 2–3 MeV. In this case the relative s-factors, which are
believed to be more reliable than the absolute ones, are
sufficient.

2.2 Results

The calculations with the 2N forces only are performed us-
ing two different NN potentials: the Bonn B [10] and the
OSBEP [11] ones. In both cases the static field is found to
consist of the Lorentz scalar and the Lorentz vector with
values of about −400 MeV and +300 MeV, respectively,
i.e. just those provided by the Dirac phenomenology [12].
In this way nuclear relativity is found to be a really ex-
isting nuclear phenomenon rather than the suggestion of
J.D. Walecka [13]. So the eigenstate equation (20) is the
Dirac equation, the eigenfunctions ϕλ(x) thus being Dirac
bispinors (see ref. [3] for details).

The experimental doorway state energies are shown
in fig. 5 together with the results of the calculations. As
seen from the figure the calculated “pair” spectra are con-
stricted compared to the observed ones: the lowest states
are underbound, whereas the highest ones are overbound
in most of the cases. This means that the potential well
resulting from the 2N forces is too wide but insufficiently
deep thus clearly indicating the presence of the contribu-
tion from many-particle NN forces. To get the deeper and

Fig. 6. Contribution Um of many-particle forces to the nuclear
static field (schematic plot).

narrower potential well, this contribution must be nega-
tive in the nuclear interior and positive in the nuclear sur-
face region as schematically shown in fig. 6. Nothing is
known about the many-particle NN forces resulting from
the nonlinearity of strong interactions. Under such condi-
tions it is reasonable to look for Um(r) as a power series
expansion in the nuclear density distribution,

Um(r) = a3ρ
2(r) + a4ρ3(r) + · · · (27)

the ρ2 and ρ3 terms arising from the 3N and 4N forces,
etc. To elucidate the physical meaning of the coefficients,
let us consider a general form of the 3N term:

U3(r) =
∫
f3(r1 − r, r2 − r)ρ(r1)ρ(r2)d3r1d3r2 . (28)

In the homogeneous nuclear matter this gives

U3 = ρ2
∫
f3(r1 − r, r2 − r) d3r1d3r2 , (29)

so
a3 =

∫
f3(ξ,η) d3ξd3η . (30)

In the same way

a4 =
∫
f4(ξ,η,ζ) d3ξ d3η d3ζ . (31)

The simplest way to get the appropriate form of Um(r),
fig. 6, is to include the first two terms of the expansion (27)
with a3 > 0 and a4 < 0. Hence, the many-particle NN
interaction includes at least the 3N repulsion and the 4N
attraction. Of course, the presence of higher many-particle
forces is not excluded. Therefore, the parameters a3 and
a4 may be tentatively treated as effective quantities ac-
counting for such forces. In this case they should be space-
dependent, but the experimental accuracy is insufficient to
reveal this dependence.

The above results are for the isoscalar part of the static
field. The isovector part contains the 2N terms arising
from the exchange by δ (scalar-isovector) and ρ (vector-
isovector) mesons and the many-particle one U−

m(r). The
above 2N terms are of close magnitude but different sign
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thus greatly cancelling each other. For this reason the
many-particle contribution appears to be the dominant
part of the isovector potential. But in contrast to the
isoscalar case the quantity U−

m(r) is found to be positive in
the whole nuclear region. So its “many-particle structure”
cannot be safely determined: the 3N forces are sufficient
in this case

U−
m(r) = a−3 ρ(r)ρ

−(r), ρ(r) = ρn(r) + ρp(r),

ρ−(r) = ρn(r) − ρp(r) ; (32)

ρn and ρp are the neutron and proton density distribu-
tions.

The total static nuclear field is

Ust(x) = U2(x) + a3ρ2(r) + a4ρ3(r)

−τ3
(
U−

2 (x) + a−3 ρ(r) ρ
−(r)

)
; (33)

τ3 = −1 for neutrons and +1 for protons. The 2N terms
consisting of scalar and vector fields (see ref. [3]),

U2(x) = γ0S2(r) + V2(r) , U−
2 (x) = γ0S−2 (r) + V −

2 (r),
(34)

are calculated using the Bonn B [10] and the OSBEP [11]
potentials, whereas the parameters a3, a4 and a−3 are de-
termined by the best-fit procedure [3] (the results for the
spectra of doorway states are labelled as “full” in fig. 5).
They are found to be

a3 = 16.9296 fm5, a4 = −107.6744 fm8,

a−3 = 3.6824 fm5, (35)

when the Bonn B potential is used for the 2N forces and

a3 = 17.0011 fm5, a4 = −110.3747 fm8,

a−3 = 4.7346 fm5 . (36)

for the OSBEP potential. More interesting are the val-
ues of the 2N, 3N and 4N contributions in the nuclear
interior. Taking ρ0 = 0.17 fm−3 for the average nucleon
density in this region and ρ−0 = N−Z

A ρ0, we get

U2 = −83 MeV, U3 = +96.5 MeV, U4 = −104 MeV,

U−
2 = 6

N − Z
A

MeV , U−
m = 21

N − Z
A

MeV (37)

for the Bonn B potential and

U2 = −82 MeV, U3 = +97 MeV, U4 = −107 MeV,

U−
2 = 0 , U−

m = 27
N − Z
A

MeV (38)

for the OSBEP one. It is worth mentioning that the value
of the potential in the nuclear interior is just the value
of the force at the average distance r0 between nucleons.
Indeed, to get for instance the value of the 3N forces the
volume integral a3, eq. (30), must be divided by the square
of the average volume per nucleon V0 = 4π

3 r
3
0. But the

quantity V −1
0 is just the average density ρ0, so

f3 = a3V
−2
0 = a3ρ

2
0 = U3 (39)

and the same for f2 and f4. In this way we see that the
estimate (2) of the effective field theory does not apply to
the genuine many-particle forces.

Fig. 7. Correlation-free (dotted line) and observed (solid line)
proton density distributions in 40Ca.

2.3 Correlations in nucleon density distributions

The correlation effects, owing to which the nuclear wave
functions are different from Slater determinants, play an
important role in nuclear phenomena. However, the ex-
act methods of the treatment do not exist whereas the
approximate ones are developed for the case of instanta-
neous two-particle forces only. For this reason the model-
independent information about the magnitude of the cor-
relation effects is not available at present. Such informa-
tion, being important by itself, can be used as a test for
more sophisticated methods taking into account both the
many-particle nucleon-nucleon forces and the retardation
effects (the latter ones may be of importance at higher
densities).

The above information may be obtained in our ap-
proach by calculating the correlation-free quantities and
comparing them with the observed ones [14].

Let us perform this for nucleon density distributions
in nuclei. As a result of the correlations the occupation
numbers nλ of single-particle states are different from the
Fermi step Θ(εF − ελ) and therefore a part of nucleons is
out of the Fermi surface because the states with ελ > εF
are partly occupied. The number of such nucleons may be
found by calculating the correlation-free density

ρcf(r) =
∑

λ

Θ(εF − ελ)|ϕλ(x)|2 (40)

and comparing it with the experimental one. This compar-
ison is performed in fig. 7 for the proton density distribu-
tion in 40Ca. As seen from the figure the correlation-free
density contains more nucleons in the inner region r < r1,
the latter is the intersection point ρcf(r1) = ρ(r1). The
same result is obtained for neutron and proton densities
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Table 1. Nout numbers in doubly closed-shell nuclei.

16O 40Ca 90Zr 208Pb

Zout 1.15 3.53 6.46 13.22
Nout 1.10 3.15 7.34 13.15
Aout 2.25 6.68 13.80 26.37

Aout/A,% 14 16.7 15.3 12.7

in all nuclei. The number of redistributed nucleons is

Nout = 4π

r1∫
0

[ρcf(r) − ρ(r)] r2dr =

4π

∞∫
r1

[ρ(r) − ρcf(r)] r2dr . (41)

This is just the number of nucleons out of the Fermi-
surface because its depletion due to the correlations is the
only reason for the redistribution. So the Nout numbers
are the natural measure of the correlation effects in the
density distributions.

The results of the calculations are shown in table 1.
As seen from the table the number of such nucleons is
rather large even for the doubly closed-shell nuclei. To
our knowledge, this fact was first mentioned by Frankfurt
and Strikman [15] on the basis of the analysis of inclu-
sive deep inelastic lepton-nucleus scattering data at large
values of the Björken scaling variable. According to their
recent data [16] the ratio Aout/A is (20 ± 3)% which is in
reasonable agreement with our results.

3 Concluding remarks

Our main result is the demonstration of the possibility
to observe the nonlinearity of strong interactions in nu-
clear experiments via the resulting many-particle nucleon-
nucleon forces.

As seen from eqs. (36) and (37) the 3N and 4N forces
are of the same magnitude as the 2N ones, but the signs of
the many-particle forces are different. So the 3N and 4N
forces greatly compensate each other. This is the possible

reason for a relative weakness of the effective 3N forces
as found in the calculations for few-nucleon systems, see
sect. 1. But this near-compensation occurs at observed
density values and it is hardly expected to be the case
for higher densities. For this reason the contemporary re-
sults for the nuclear matter equation of state seem to be
doubtful. More sophisticated methods taking into account
the nonlinearity of strong interaction are necessary to get
trustworthy results for the equation of state of nuclear
matter.

The same concerns the calculations for few-nucleon
systems because the contemporary methods do not ap-
ply in the presence of strong 3N and 4N forces. In par-
ticular, neither the Faddeev equations nor the Faddeev-
Jakubovsky ones do apply in this case.
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